## 2.5.4. Update of Ground Sensible and Latent Heat Fluxes[¶](#update-of-ground-sensible-and-latent-heat-fluxes "Permalink to this headline") ------------------------------------------------------------------------------------------------------------------------------------------ The sensible and water vapor heat fluxes derived above for bare soil and soil beneath canopy are based on the ground surface temperature from the previous time step \\(T\_{g}^{n}\\) and are used as the surface forcing for the solution of the soil temperature equations (section [2.6.1](https://escomp.github.io/ctsm-docs/versions/master/html/tech_note/Soil_Snow_Temperatures/CLM50_Tech_Note_Soil_Snow_Temperatures.html#numerical-solution-temperature)). This solution yields a new ground surface temperature \\(T\_{g}^{n+1}\\). The ground sensible and water vapor fluxes are then updated for \\(T\_{g}^{n+1}\\) as (2.5.149)[¶](#equation-5-140 "Permalink to this equation")\\\[H'\_{g} =H\_{g} +\\left(T\_{g}^{n+1} -T\_{g}^{n} \\right)\\frac{\\partial H\_{g} }{\\partial T\_{g} }\\\] (2.5.150)[¶](#equation-5-141 "Permalink to this equation")\\\[E'\_{g} =E\_{g} +\\left(T\_{g}^{n+1} -T\_{g}^{n} \\right)\\frac{\\partial E\_{g} }{\\partial T\_{g} }\\\] where \\(H\_{g}\\), \\(E\_{g}\\), \\(\\frac{\\partial H\_{g} }{\\partial T\_{g} }\\), and \\(\\frac{\\partial E\_{g} }{\\partial T\_{g} }\\) are the sensible heat and water vapor fluxes and their partial derivatives derived from equations [(2.5.62)](#equation-5-62), [(2.5.66)](#equation-5-66), [(2.5.86)](#equation-5-83), and [(2.5.87)](#equation-5-84) for non-vegetated surfaces and equations [(2.5.92)](#equation-5-89), [(2.5.105)](#equation-5-102), [(2.5.126)](#equation-5-123), and [(2.5.127)](#equation-5-124) for vegetated surfaces using \\(T\_{g}^{n}\\). One further adjustment is made to \\(H'\_{g}\\) and \\(E'\_{g}\\). If the soil moisture in the top snow/soil layer is not sufficient to support the updated ground evaporation, i.e., if \\(E'\_{g} > 0\\) and \\(f\_{evap} < 1\\) where (2.5.151)[¶](#equation-5-142 "Permalink to this equation")\\\[f\_{evap} =\\frac{{\\left(w\_{ice,\\; snl+1} +w\_{liq,\\, snl+1} \\right)\\mathord{\\left/ {\\vphantom {\\left(w\_{ice,\\; snl+1} +w\_{liq,\\, snl+1} \\right) \\Delta t}} \\right.} \\Delta t} }{\\sum \_{j=1}^{npft}\\left(E'\_{g} \\right)\_{j} \\left(wt\\right)\_{j} } \\le 1,\\\] an adjustment is made to reduce the ground evaporation accordingly as (2.5.152)[¶](#equation-5-143 "Permalink to this equation")\\\[E''\_{g} =f\_{evap} E'\_{g} .\\\] The term \\(\\sum \_{j=1}^{npft}\\left(E'\_{g} \\right)\_{j} \\left(wt\\right)\_{j}\\) is the sum of \\(E'\_{g}\\) over all evaporating PFTs where \\(\\left(E'\_{g} \\right)\_{j}\\) is the ground evaporation from the \\(j^{th}\\) PFT on the column, \\(\\left(wt\\right)\_{j}\\) is the relative area of the \\(j^{th}\\) PFT with respect to the column, and \\(npft\\) is the number of PFTs on the column. \\(w\_{ice,\\, snl+1}\\) and \\(w\_{liq,\\, snl+1}\\) are the ice and liquid water contents (kg m\-2) of the top snow/soil layer (Chapter [2.7](https://escomp.github.io/ctsm-docs/versions/master/html/tech_note/Hydrology/CLM50_Tech_Note_Hydrology.html#rst-hydrology)). Any resulting energy deficit is assigned to sensible heat as (2.5.153)[¶](#equation-5-144 "Permalink to this equation")\\\[H''\_{g} =H\_{g} +\\lambda \\left(E'\_{g} -E''\_{g} \\right).\\\] The ground water vapor flux \\(E''\_{g}\\) is partitioned into evaporation of liquid water from snow/soil \\(q\_{seva}\\) (kgm\-2 s\-1), sublimation from snow/soil ice \\(q\_{subl}\\) (kg m\-2 s\-1), liquid dew on snow/soil \\(q\_{sdew}\\) (kg m\-2 s\-1), or frost on snow/soil \\(q\_{frost}\\) (kg m\-2 s\-1) as (2.5.154)[¶](#equation-5-145 "Permalink to this equation")\\\[q\_{seva} =\\max \\left(E''\_{sno} \\frac{w\_{liq,\\, snl+1} }{w\_{ice,\\; snl+1} +w\_{liq,\\, snl+1} } ,0\\right)\\qquad E''\_{sno} \\ge 0,\\, w\_{ice,\\; snl+1} +w\_{liq,\\, snl+1} >0\\\] (2.5.155)[¶](#equation-5-146 "Permalink to this equation")\\\[q\_{subl} =E''\_{sno} -q\_{seva} \\qquad E''\_{sno} \\ge 0\\\] (2.5.156)[¶](#equation-5-147 "Permalink to this equation")\\\[q\_{sdew} =\\left|E''\_{sno} \\right|\\qquad E''\_{sno} <0{\\rm \\; and\\; }T\_{g} \\ge T\_{f}\\\] (2.5.157)[¶](#equation-5-148 "Permalink to this equation")\\\[q\_{frost} =\\left|E''\_{sno} \\right|\\qquad E''\_{sno} <0{\\rm \\; and\\; }T\_{g} 0} \\\\ {\\lambda \_{vap} \\qquad {\\rm otherwise}} \\end{array}\\right\\}\\end{split}\\\] where \\(\\lambda \_{sub}\\) and \\(\\lambda \_{vap}\\) are the latent heat of sublimation and vaporization, respectively (J (kg\-1) ([Table 2.2.7](https://escomp.github.io/ctsm-docs/versions/master/html/tech_note/Ecosystem/CLM50_Tech_Note_Ecosystem.html#table-physical-constants)). When converting vegetation water vapor flux to an energy flux, \\(\\lambda \_{vap}\\) is used. The system balances energy as (2.5.162)[¶](#equation-5-153 "Permalink to this equation")\\\[\\overrightarrow{S}\_{g} +\\overrightarrow{S}\_{v} +L\_{atm} \\, \\downarrow -L\\, \\uparrow -H\_{v} -H\_{g} -\\lambda \_{vap} E\_{v} -\\lambda E\_{g} -G=0.\\\]