add feature

This commit is contained in:
baol 2024-12-25 09:39:53 +08:00
parent c4732e08a7
commit 9d82c9294f
5 changed files with 210 additions and 1 deletions

70
case.py Normal file
View File

@ -0,0 +1,70 @@
import pandas as pd
# 读取Excel文件
file_path = "/home/baol/tools/数据草稿-案款.xls" # 替换为你的Excel文件路径
# 读取“账户收”工作表,只保留指定列
sheet_account_receipt = pd.read_excel(file_path, sheet_name="账户收")
sheet_account_receipt = sheet_account_receipt[
["归属本案金额", "到账金额", "到账日期", "缴款人", "案号"]
]
# 读取“收入”工作表,表头从第二行开始,只保留指定列
sheet_income = pd.read_excel(file_path, sheet_name="收入", header=1)
sheet_income = sheet_income[["对方户名", "交易时间", "金额"]]
# 统一日期格式
sheet_account_receipt["到账日期"] = pd.to_datetime(
sheet_account_receipt["到账日期"]
).dt.strftime("%Y-%m-%d")
sheet_income["交易时间"] = pd.to_datetime(sheet_income["交易时间"]).dt.strftime(
"%Y-%m-%d"
)
# 重命名列以便于合并
sheet_account_receipt.rename(
columns={"到账金额": "金额", "到账日期": "交易时间"}, inplace=True
)
# 合并两个数据框
merged_df = pd.merge(
sheet_account_receipt, sheet_income, on=["金额", "交易时间"], how="inner"
)
# 排除在某一天同时有多笔金额相同的记录
filtered_df = merged_df.groupby(["金额", "交易时间"]).filter(lambda x: len(x) == 1)
# 检索出在某一天同时有多笔金额相同的记录
duplicate_records = merged_df.groupby(["金额", "交易时间"]).filter(lambda x: len(x) > 1)
# 将结果保存为新的Excel文件
output_file_path_filtered = "/home/baol/tools/matched_records.xlsx" # 匹配结果
output_file_path_duplicates = "/home/baol/tools/duplicate_records.xlsx" # 重复记录
filtered_df.to_excel(output_file_path_filtered, index=False, engine="openpyxl")
duplicate_records.to_excel(output_file_path_duplicates, index=False, engine="openpyxl")
print(f"匹配结果已保存到 {output_file_path_filtered}")
print(f"重复记录已保存到 {output_file_path_duplicates}")
# 合并两个数据框,并标记匹配情况
out_merged_df = pd.merge(
sheet_account_receipt,
sheet_income,
on=['金额', '交易时间'],
how='outer', # 使用外连接以保留未匹配的记录
indicator=True # 标记匹配情况
)
# 筛选出未匹配的记录
unmatched_records = out_merged_df[out_merged_df['_merge'] != 'both']
# 删除用于标记匹配情况的列
unmatched_records.drop(columns=['_merge'], inplace=True)
# 将结果保存为新的Excel文件
output_file_path_unmatched = '/home/baol/tools/unmatched_records.xlsx' # 未匹配记录
unmatched_records.to_excel(output_file_path_unmatched, index=False, engine='openpyxl')
print(f"未匹配的所有记录已保存到 {output_file_path_unmatched}")

47
case1.py Normal file
View File

@ -0,0 +1,47 @@
import pandas as pd
# 读取Excel文件
file_path = "/home/baol/tools/数据草稿-案款.xls" # 替换为你的Excel文件路径
sheet_account_receipt = pd.read_excel(file_path, sheet_name="账户收")
sheet_income = pd.read_excel(file_path, sheet_name="收入", header=1)
#归属本案金额、到账金额、到账日期、缴款人、案号
#对方户名、交易时间、金额
# 统一日期格式
sheet_account_receipt["到账日期"] = pd.to_datetime(
sheet_account_receipt["到账日期"]
).dt.strftime("%Y-%m-%d")
sheet_income["交易时间"] = pd.to_datetime(sheet_income["交易时间"]).dt.strftime(
"%Y-%m-%d"
)
# 重命名列以便于合并
sheet_account_receipt.rename(
columns={"到账金额": "金额", "到账日期": "交易时间"}, inplace=True
)
# 合并两个数据框
merged_df = pd.merge(
sheet_account_receipt, sheet_income, on=["金额", "交易时间"], how="inner"
)
# 排除在某一天同时有多笔金额相同的记录
# 先按金额和交易时间分组,然后筛选出每个组中只有一条记录的情况
# filtered_df = merged_df.groupby(["金额", "交易时间"]).filter(lambda x: len(x) == 1)
# # 输出结果
# print(filtered_df)
# output_file_path = "/home/baol/tools/case1_records.xlsx" # 替换为你希望保存的文件路径
# filtered_df.to_excel(output_file_path, index=False)
# print(f"匹配结果已保存到 {output_file_path}")
# 检索出在某一天同时有多笔金额相同的记录
duplicate_records = merged_df.groupby(['金额', '交易时间']).filter(lambda x: len(x) > 1)
# 将结果保存为新的Excel文件
output_file_path = '/home/baol/tools/case2_records.xlsx' # 替换为你希望保存的文件路径
duplicate_records.to_excel(output_file_path, index=False, engine='openpyxl')

45
case2_in.py Normal file
View File

@ -0,0 +1,45 @@
import pandas as pd
# 读取Excel文件
file_path = "/home/baol/tools/数据草稿-案款1.xls" # 替换为你的Excel文件路径
# 读取“账户收”工作表,只保留指定列
sheet_account_receipt = pd.read_excel(file_path, sheet_name="一案一账户收")
sheet_account_receipt = sheet_account_receipt[
["归属本案金额", "到账金额", "到账日期", "缴款人", "案号"]
]
# 读取“收入”工作表,表头从第二行开始,只保留指定列
sheet_income = pd.read_excel(file_path, sheet_name="银行-收入", header=1)
sheet_income = sheet_income[["对方户名", "交易时间", "金额"]]
# 统一日期格式
sheet_account_receipt["到账日期"] = pd.to_datetime(
sheet_account_receipt["到账日期"]
).dt.strftime("%Y-%m-%d")
sheet_income["交易时间"] = pd.to_datetime(sheet_income["交易时间"]).dt.strftime(
"%Y-%m-%d"
)
# 合并两个数据框,保留各自的列名
merged_df = pd.merge(
sheet_account_receipt,
sheet_income,
left_on=["到账金额", "到账日期"], # 账户收的匹配列
right_on=["金额", "交易时间"], # 收入的匹配列
how="outer", # 外连接以保留未匹配的记录
suffixes=("_一案一账户收", "_银行收入"), # 为重复列添加后缀
)
# 筛选出未匹配的记录
unmatched_records = merged_df[merged_df["到账金额"].isna() | merged_df["金额"].isna()]
# 将结果保存为新的Excel文件
output_file_path_merged = "/home/baol/tools/merged_records.xlsx" # 合并后的记录
output_file_path_unmatched = "/home/baol/tools/unmatched_records.xlsx" # 未匹配的记录
merged_df.to_excel(output_file_path_merged, index=False, engine="openpyxl")
unmatched_records.to_excel(output_file_path_unmatched, index=False, engine="openpyxl")
print(f"合并后的记录已保存到 {output_file_path_merged}")
print(f"未匹配的记录已保存到 {output_file_path_unmatched}")

45
case2_out.py Normal file
View File

@ -0,0 +1,45 @@
import pandas as pd
# 读取Excel文件
file_path = "/home/baol/tools/数据草稿-案款1.xls" # 替换为你的Excel文件路径
# 读取“账户收”工作表,只保留指定列
sheet_account_receipt = pd.read_excel(file_path, sheet_name="一案一账户支")
sheet_account_receipt = sheet_account_receipt[
["支款案号", "来源案号", "申请人", "支付日期", "支付金额", "领款人"]
]
# 读取“收入”工作表,表头从第二行开始,只保留指定列
sheet_income = pd.read_excel(file_path, sheet_name="银行支出", header=1)
sheet_income = sheet_income[["对方户名", "交易时间", "支出金额"]]
# 统一日期格式
sheet_account_receipt["支付日期"] = pd.to_datetime(
sheet_account_receipt["支付日期"]
).dt.strftime("%Y-%m-%d")
sheet_income["交易时间"] = pd.to_datetime(sheet_income["交易时间"]).dt.strftime(
"%Y-%m-%d"
)
# 合并两个数据框,保留各自的列名
merged_df = pd.merge(
sheet_account_receipt,
sheet_income,
left_on=["支付金额", "支付日期"], # 账户收的匹配列
right_on=["支出金额", "交易时间"], # 收入的匹配列
how="outer", # 外连接以保留未匹配的记录
suffixes=("_一案一账户支", "_银行支出"), # 为重复列添加后缀
)
# 筛选出未匹配的记录
unmatched_records = merged_df[merged_df["支付金额"].isna() | merged_df["支出金额"].isna()]
# 将结果保存为新的Excel文件
output_file_path_merged = "/home/baol/tools/merged_out_records.xlsx" # 合并后的记录
output_file_path_unmatched = "/home/baol/tools/unmatched_out_records.xlsx" # 未匹配的记录
merged_df.to_excel(output_file_path_merged, index=False, engine="openpyxl")
unmatched_records.to_excel(output_file_path_unmatched, index=False, engine="openpyxl")
print(f"合并后的记录已保存到 {output_file_path_merged}")
print(f"未匹配的记录已保存到 {output_file_path_unmatched}")

View File

@ -1,2 +1,4 @@
pandas
psycopg[binary]
psycopg[binary]
xlrd
openpyxl