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Calling Fortran Subroutines: Introduction 2

1. INTRODUCTION

Virtually all scientific computation makes use of standard (“canned”) subroutines at some point. In this
report, I have written up some general guidelines and a number of examples for linking Fortran subroutines
to main programs written in Fortran, C, or C++. There used to be another section on calling Fortran
subroutines from Matlab. I have decided to put that into a separate document because this is considerably
harder and probably of less interest to most people. All examples use the CMLIB and LAPACK libraries.

The report is intended as a resource for research activities at lowa State, and as a supplementary reference
for numerical analysis courses.

The case studies were developed and tested on the three different hardware platforms that currently make
up Project Vincent. Project Vincent is a large network of centrally administrated workstations at Iowa State
University, patterned after Project Athena at MIT. With minor changes, the examples should carry over to
settings outside of Project Vincent.

I have kept things simple rather than comprehensive. Some of my assertions may not even be quite
correct, if T felt that a complete description would just confuse beginners. A lot of things are repeated in
each relevant place, because I expect people to just read the parts that they are interested in.

The programming examples follow my particular tastes, which may or may not suit you. Feel free to
adapt the examples to your style. For example, I strongly believe in declaring all variables in Fortran, and
in prototyping all external subroutines in C. It is not strictly necessary, but it lets the compiler spot errors.

If you want to reproduce the case studies, you will need access to CMLIB and LAPACK. On Project
Vincent, the following statements should be in your .startup.tty file:

add math

add lapack
If you are outside Project Vincent, see section Finding a Routine for more information on getting the source
code for CMLIB or LAPACK.

The case studies for calling Fortran from C are

¢ DGAMMA (double precision gamma function) from FNLIB, which is part of CMLIB. This is the

simplest case: a function with one input argument, one return value.

e DGESVD (double precision singular value decomposition) from LAPACK: Multiple arguments, some

of them arrays.

¢ XERROR/XERBLA (error message routines from LINPACK/LAPACK): String arguments.

e DQAGS (double precision quadrature routine) from QUADPACK, which is part of CMLIB: Subroutine

passed as argument.

¢ CGAMMA (complex gamma function). Same as DGAMMA, but for complex numbers.

e DGESVD Revisited. More details and suggestions for advanced programmers.

The sections on calling Fortran from Fortran and from C+4+4 use a subset of the same examples.

Each section requires that you understand the material from previous sections, and that you are already
familiar with Fortran, C, and C++4. Some important concepts are repeated frequently, for the benefit of
readers who only read part of this document.
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3 Calling Fortran Subroutines: Finding a Routine

2. FINDING A ROUTINE

Suppose you need a subroutine for a specific numerical task. Where do you start looking?
I would try the following things, in this order:

e Look on Project Vincent.

“Wozu in die Ferne schweifen, wenn das Gute liegt so nah”. If you find a suitable subroutine in
some locker on Project Vincent, it will be already compiled and ready to go.

The Math Department supports two main numerical packages: CMLIB and LAPACK. Documen-
tation for both packages can be accessed through http://www.math.iastate.edu/software.html.

CMLIB is a collection of many public domain sublibraries from Netlib, including LINPACK and
EISPACK. Our version was compiled by Ronald F. Boisvert, Sally E. Howe and David K. Kahaner in
April 1988. If you don’t have CMLIB, you can get the necessary pieces from Netlib (see below).

LAPACK is a linear algebra package intended to be efficient on many types of computer architecture.
It can also be found on Netlib.

CMLIB and LAPACK are the only two libraries illustrated here, but there are others in the math
and mathclasses lockers.

The Computation Center or other departments support other packages, for example the NAG library.
Check olc answers for leads, try which-locker if you know the name of a package, look around the
lockers of likely departments, or ask in a local newsgroup.

e Look in standard software repositories. The main ones I know of are
— Netlib, accessible through http://netlib.bell-labs.com/netlib/master/readme.html
— GAMS (Guide to Available Mathematica Software), accessible through http://gams.nist.gov.
Whatever you find there needs to be compiled first.
e Ask for help.

Ask a colleague, or post a question in a relevant newsgroup like sci.math.num-analysis. The turn-
around time can be a little longer here, or you may not get a response, but you might get information
you could not find on your own.
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3. CALLING FORTRAN FROM FORTRAN

If you want to reproduce the case studies in this section, you will need access to CMLIB and LAPACK.
On Project Vincent, the following statements should be in your .startup.tty file:
add math
add lapack

Documentation for both packages can be found through http://www.math.iastate.edu/software.html.
If you are outside Project Vincent, see section Finding a Routine for more information on getting the source
code for CMLIB or LAPACK.

Linking Fortran to Fortran is very straightforward. You just have to tell the compiler where the libraries
are located. Only one example for each library is provided.
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5 Calling Fortran From Fortran

CASE StuDpy 1: DGAMMA

This case study illustrates linking with CMLIB. CMLIB is located in the math locker.
We want to call the double precision gamma function DGAMMA from FNLIB, which is part of CMLIB,

declared as
double precision function dgamma(x)
double precision x

This function calculates the gamma function I'(z).
The Fortran program progl.f is

program progil
double precision x, y, dgamma

print*, ’enter x:’
read*, x
y = dgamma (x)
print*, ’gamma(x) = ’,y
end
To compile and run the program:
% £77 -o progl progl.f /home/math/lib/‘arch‘/libcm.a
% progl
enter x:
2.718
gamma(x) = 1.56711274176688
An alternative way to specify linking with CMLIB is
% £77 -o progl progl.f -L/home/math/lib/‘arch -lcm
I usually use the first form for linking with a single library, the second form for linking with two or more
libraries in the same directory.

If you type the command lines the way they are written, they will work on all three architectures currently
supported on Project Vincent. You can also replace ‘arch‘ with dec, axp or sgi, depending on the machine
you are using. These are backwards apostrophes around the arch; the font I am using does not show that
very well.
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Calling Fortran From Fortran 6

CASE StuDY 2: DGESVD

This case study illustrates linking with LAPACK. LAPACK is located in the lapack locker.
Routine DGESVD calculates the singular value decomposition (SVD) of a general double precision matrix.
A matrix A of size (m x n), stored in array A(1lda,n), is decomposed into

A=UxVT,

where U is an orthogonal matrix of size (m x m), stored in array U(ldu,m), V7 is an orthogonal matrix
of size (n x n), stored in array VT (1dvt,n), and ¥ is a diagonal matrix of size (m x n), with the diagonal
stored in a one-dimensional array S(min(m,n)).

The declaration is

subroutine dgesvd(jobu, jobvt, m, n, A, 1da, S, U, 1ldu, VT, ldvt,

+ work, lwork, info )
character jobu, jobvt
integer info, lda, 1ldu, ldvt, lwork, m, n
double precision A(lda,*), S(*), U(1ldu,*),
+ VT(1ldvt,*), WORK(*)
For the exact meaning of all these parameters, consult the LAPACK documentation. All we need to know
here is that jobu = jobv = ’a’ will request that U, VT are actually calculated. (There are applications

where U, VT are not needed, or only parts of them are needed; not calculating them saves time).
As an example, we will calculate the SVD of the matrix

1 2 3
A= ( 4 5 6 )
The program is

program prog2

parameter (m=2, n=3, lwork=20)

parameter (minmn=min(m,n))

integer info

double precision A(m,n), S(minmn), U(m,m), VT(n,n), work(lwork)
data A /1,4,2,5,3,6/

call dgesvd(’a’,’a’,m,n,A,m,S,U,m,VT,n,work,lwork, info)

if (info .ne. 0) print*, ’DGESVD returned INFO =’, info
call print_matrix(’U =’,U,m,m)
call print_matrix(’Sigma =’,S,1,minmn)

call print_matrix(’VT =’,VT,n,n)
end

subroutine print_matrix(label,A,m,n)
character*(*) label

integer m, n, i, j

double precision A(m,n)

print*, label
do 10i=1, m
write (*,’(666£20.15)’) (A(i,j),j=1,n)
10 continue

Copyright 1996 by Fritz Keinert printed February 12, 1997



7 Calling Fortran From Fortran

end
All of LAPACK is based on the BLAS (Basic Linear Algebra Subroutines). I have put the BLAS in a
separate library so that you can use a different set of BLAS if you have one. You always need to link with
both libraries.
We compile and run the program with
% £77 -o prog2 prog2.f -L/home/lapack/lib/‘arch® -1llapack -lblas
% prog2
U =
-0.386317703118612 -0.922365780077058
-0.922365780077058 0.386317703118612
Sigma =
9.508032000695723  0.772869635673484
VT =
-0.428667133548626 -0.566306918848035 -0.703946704147444
0.805963908589297 0.112382414096594 -0.581199080396110
0.408248290463864 -0.816496580927726  0.408248290463863
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4. CALLING FORTRAN FROM C

This section contains some general guidelines on calling Fortran subroutines from a C main program. It
is assumed that you already know C pretty well, and that you know how to do compiling and linking of
Fortran or C programs.

If you want to reproduce the case studies in this section, you will need access to CMLIB and LAPACK.
On Project Vincent, the following statements should be in your .startup.tty file:

add math
add lapack
Documentation for both packages can be found through http://www.math.iastate.edu/software.html.

If you are outside Project Vincent, see section Finding a Routine for more information on getting the source
code for CMLIB or LAPACK.

‘ A Fortran routine is known to C by its name in lowercase, with underscore appended ‘

ExAMPLE: The Fortran subroutine DGAMMA is known to the C compiler as dgamma._.

‘ All parameters need to be passed by reference ‘

Fortran passes all arguments by reference. This means that the addresses of the actual arguments are
passed to the subroutine. Anything the subroutine does to its arguments will affect the values of these
variables in the main program.

C passes all arguments by value. This means that only copies of the values of the arguments are passed.
Anything the subroutine does to its arguments will not affect the main program. The arguments are destroyed
at the end of the subroutine call.

To imitate a call by reference from C, you need to pass pointers to the arguments, instead of the arguments
itself. However, an array variable in C is already a pointer to the corresponding storage location, and you
don’t have to apply the referencing operator & a second time.

Note that this means that you can never pass a constant number directly to a Fortran subroutine. You
have to assign the constant to a variable first, then pass the address of the variable.

Strings are arrays of characters, so you don’t have to apply the referencing operator &, but you also have
to pass the length of the string as a separate integer. See case study XERROR/XERBLA.

EXAMPLE: A call by value in C:

float f(float x) {...}

main() {
float x, y;
y = f(x);

}

A call by reference in C:
float f(float *x) {...}

main() {
float x, y;
y = £(&x);
}

The Fortran subroutine

subroutine sub(x,y,z)
real x, y(10), z(10,10)

is called from C as

Copyright 1996 by Fritz Keinert printed February 12, 1997



9 Calling Fortran From C

extern void sub_(float *x, float y[], float (*z)[1);

main() {
float x, y[10], z[10][10];
sub_(&x,y,2);

}

The declarations float *x and float x[] mean exactly the same: x is a pointer to a floating-point number.
I use the first notation for x because it is a scalar, and the second for y because it is an array, but that is
only for my personal benefit; the compiler doesn’t care.

I use the declaration float (*z) [] because it works, while the more natural float z[] [] does not. See
the case study DGESVD Revisited for more information on this.

Arrays in Fortran are stored by column, arrays in C are stored by row. Subscript
numbering in Fortran starts with 1, in C it starts with 0

A two-dimensional array

air a2 ... Qin
a1 Aa22 ... A2n
Gml Am2 ... Gmn

is strung out into a vector in memory. Fortran does it by columns, that is
aii, @21, - - - ,0mi,a12, 022, - . -

C does it by rows, that is
a1, a1, ... ,Aa1n,021,022,. ..

If you pass a two-dimensional array between Fortran and C, one language will see the transpose of what
the other language sees.

There are many ways to deal with this problem, depending on the individual circumstances:

e It may not matter at all.

e You may be able to rearrange calculations, for example by using (AB)T = BT AT.

e Some LINPACK or LAPACK subroutines have a switch to make them use A7 instead of A.

e Maybe you really do need to transpose the array.
Do whatever works, just be aware of this problem.

There is no problem with one-dimensional arrays. Arrays of dimension higher than 2 are left as an exercise
for the reader.

Also, keep in mind that the first entry in a Fortran array is x(1) or A(1,1),in C it is x[0] or A[0] [0].

Do all your input/output in C

More specifically, in decreasing order of preference:

e The ideal case is when there are no read/write statements at all in the Fortran subroutine.
e The next best case is when there are some read/write statements in the subroutine, but they are not
used (for example error messages that can be turned on or off).

The program will run fine, but the presence of the Fortran I/O statements will cause the loader to
link in 400K of Fortran I/O library code.

If you have the Fortran source code, you may be able to comment out the read/write statements.
Many subroutine libraries channel all I/O through a single routine; you may be able to rewrite that
one routine in C. I have done this for XERROR from CMLIB and XERBLA from LAPACK; see case
study XERROR/XERBLA.
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Calling Fortran From C 10

e If you absolutely must have I/O in both main program and subroutine, use keyboard input/screen
output, or use a different disk file in each language. That should still work ok.

e Do NOT read or write to the same disk file from both Fortran and C, unless it is closed and re-opened
in between. You will get garbled input or output. You might even uncover some interesting flaws in
Unix and get a garbled hard disk (unlikely, but conceivable).

Use the Fortran compiler for linking

There are two steps involved in producing a working program: compiling and linking. Unless you suppress
linking with the -c compiler switch, the compiler will invoke the linker automatically and specify the location
of the system libraries the linker needs.

For whatever internal reasons, the Fortran compiler knows where the C libraries are, but the C compiler
does not know where the Fortran libraries are. You could figure out the exact location of all those libraries
and specify them explicitly, but why bother? Just use the Fortran compiler for the linking step.
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11 Calling Fortran From C

Corresponding Declarations

The following table gives a quick reference to corresponding data type declarations in Fortran and C. For
explanations, read this overview section and/or the appropriate case study. Common blocks are mentioned
in this table for completeness, but they are not mentioned anywhere else in the text; they don’t usually come
up in calling library subroutines.

| Fortran | C

typedef struct { float re, im; } complex;
typedef struct { double re, im; } double_complex;

integer x, y(10), =z(10,20) | int x, y[10], =z[20][10];
real float

real*8 double

complex complex

complex*16 double_complex

character c char c, s[11];

character*10 s

real function f(x,y,z,c,s,f2) | extern float f_(float *x, float y[], float (*z)I[],

real x,y(10),z(10,20), r char *c, char s[], float f2_(float *xx),
character c int length_of_s);
character*20 s extern float f2_(float *x);
real f2 main() {
external f2 float x, y[10], z[20][10], r;
r = £(x,y,2,c,s,f2) char c¢, s[21];
r = f_(&x,y,z,&c,s,f2_,strlen(s));

+
common // a, b, c extern struct {float a; float b[10]; int c; } _BLNK__;
common /cause/ a, b, c extern struct {float a; float b[10]; int c; } cause_;
real a, b(10)
integer c
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CASE StuDpy 1: DGAMMA

This case study illustrates the simplest case: calling a simple function with one scalar argument and one
return value.
We want to call the double precision gamma function DGAMMA from FNLIB, which is part of CMLIB,

declared as

double precision function dgamma(x)
double precision x

This function calculates the gamma function I'(z).
The C program dgamma. c is

#include <stdio.h>
#include <math.h>

extern double dgamma_(double *x);

int main(int argc, char **argv) {
double x, y;
printf ("enter x: ");
scanf ("%1f",&x);
y = dgamma_ (&x);
printf ("gamma(x) = %20.151g\n",y);
return O;

}

To compile and run this program on a DecStation or SGI:

% £77 -o dgamma dgamma.c /home/math/lib/‘arch‘/libcm.a
% dgamma

enter x: 2.718

gamma(x) = 1.56711274176688

The Dec Alpha Fortran compiler is brain damaged and needs to be told explicitly that this program has NO
FORtran MAIN program:

% £77 -nofor_main -o dgamma dgamma.c /home/math/lib/‘arch‘/libcm.a
% dgamma

enter x: 2.718

gamma(x) = 1.56711274176688

An alternative way to specify linking with CMLIB is
% £77 [-nofor_main] -o dgamma dgamma.c -L/home/math/lib/‘arch® -lcm

I usually use the first form for linking with a single library, the second form for linking with two or more
libraries in the same directory. The brackets around -nofor main mean: put this argument in if you are on
an Alpha, otherwise leave it out.

If you type the command lines the way they are written, they will work on all three architectures currently
supported on Project Vincent. You can also replace ‘arch‘ with dec, axp or sgi, depending on the machine
you are using. These are backwards apostrophes around the arch; the font I am using does not show that
very well.

You could compile gamma.c with the C compiler first, for esthetic reasons or because you want to use a
different C compiler, but you should still use Fortran to do the linking:

% cc —-c dgamma.c
% £77 [-nofor_main] -o dgamma dgamma.o /home/math/lib/‘arch‘/libcm.a
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13 Calling Fortran From C

There is one more thing we can improve. The DGAMMA subroutine does not print anything, but it
contains a call to a standard routine XERROR which produces error messages if necessary. That routine
and thus the entire Fortran I/O library get linked in. We can reduce the size of the compiled program by
about 400K by rewriting XERROR in C. See case study XERROR/XFERBLA.
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CASE StuDY 2: DGESVD

This case study illustrates the use of one- and two-dimensional arrays as subroutine arguments.
Routine DGESVD calculates the singular value decomposition (SVD) of a general double precision matrix.
A matrix A of size (m X n), stored in array A(lda,n), is decomposed into

A=UxVT,

where U is an orthogonal matrix of size (m x m), stored in array U(ldu,m), V7 is an orthogonal matrix
of size (n x n), stored in array VT (1dvt,n), and ¥ is a diagonal matrix of size (m x n), with the diagonal
stored in a one-dimensional array S(min(m,n)).

The Fortran declaration is

subroutine dgesvd(jobu, jobvt, m, n, A, 1da, S, U, 1ldu, VT, ldvt,

+ work, lwork, info )
character jobu, jobvt
integer info, 1lda, 1ldu, 1ldvt, lwork, m, n

double precision A(lda,*), S(*), U(1ldu,*), VT(ldvt,*), WORK(*)

For the exact meaning of all these parameters, consult the LAPACK documentation. All we need to know
here is that jobu = jobv = ’a’ will request that U, VT are actually calculated. (There are applications
where U, VT are not needed, or only parts of them are needed; not calculating them saves time).

As an example, we will calculate the SVD of the matrix

1 2 3
A= ( 4 5 6 )
The program is

#include <stdio.h>
#include <math.h>

extern void dgesvd_(char *jobu, char *jobvt, int *m, int =*n,
double (*A)[], int *1da, double (*S)[], double (xU)I[],
int *1du, double (*VT)[], int *1dvt, double work[],
int *1lwork, int *info);

void print_matrix(char *label, double (*A)[], int m, int n) {
int i, j;
#define A(i,j) (*((double *)A + nxi + j))

printf ("%s\n",label);
for (j=0; j<m; j++) {
for (i=0; i<m; i++)
printf ("%20.151f ",A(i,j));
printf ("\n");
}
printf ("\n");
}

#define max(a,b) ((a) > (b) ? (a) : (b))
#define min(a,b) ((a) < (b) ? (a) : (b))

#define M 2
#define N 3
#define LWORK max(3*min(M,N)+max(M,N) ,5*min(M,N)-4)
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15 Calling Fortran From C

int main(int argc, char **argv) {
int m =M, n =N, lwork = LWORK, info;
double A[N][M] = {1,4,2,5,3,6},
S[min(M,N)] (1], U[M] [M], VT[N][N], work[LWORK];
char job = ’a’;

dgesvd_(&job, &job, &m, &n, A, &m, S, U, &m, VT, &n, work, &lwork, &info);
if (info != 0) fprintf(stderr,"DGESVD returned info = %d\n",info);

print_matrix("U =",U,M,M);
print_matrix("Sigma =",S,min(M,N),1);
print_matrix("VT =",VT,N,N);

return(0) ;
}
Observe that we are entering A” as data, which is seen as A by DGESVD. Fortran returns U, VT in Fortran
ordering, which is seen as U, V by the C main program. Subroutine print matrix actually prints the
transpose of its argument, so the printout looks correct. print matrix is explained in more detail in case
study DGESVD Reuvisited.
I have declared S as a two-dimensional array so that I could call print matrix on it. Normally, S should
be one-dimensional.
T use the declaration double (*A) [] for a two-dimensional array because it works, while the more natural
double A[][] does not. See case study DGESVD Reuvisited for more information on this.
Again, we include a rewritten error message routine to make the compiled program shorter (see case study
XERROR/XERBLA).
We compile and run the program with
% £77 [-nofor_main] -o dgesvd dgesvd.c xerbla.c -L/home/lapack/1lib/‘arch® -1llapack -lblas
% dgesvd
U =
-0.386317703118612 -0.922365780077058
-0.922365780077058 0.386317703118612
Sigma =
9.508032000695723  0.772869635673484
VT =
-0.428667133548626 -0.566306918848035 -0.703946704147444
0.805963908589297 0.112382414096594 -0.581199080396110
0.408248290463864 -0.816496580927726  0.408248290463863
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Calling Fortran From C 16

CaAsE STupYy 3: XERROR/XERBLA

This case study illustrates the passing of strings as parameters. It is actually backwards compared to the
other examples, because we are writing a C routine to be called from a Fortran library program. It still
illustrates the point, and is more useful than a contrived example going the other way.

Subroutine packages typically channel all error messages through a single subroutine, so that messages
can be turned off or diverted at a central place. If we rewrite this single subroutine in C, the entire Fortran
I/0 code does not need to be linked in, which saves about 400K of storage per compiled program.

I have done this here for routines XERROR from CMLIB, and XERBLA from LAPACK.

The definition of XERROR is

subroutine xerror (messg,nmessg,nerr,level)
character*72 messg
integer nmessg, nerr, level

where messg is the error message itself, nmessg is the number of characters in the message, nerr the error
number, and level the severity (2=fatal, 1=recoverable, 0=warning, -1=warning which is printed only once,
even if XERROR gets called several times for this error).

Strings in both Fortran and C are arrays of characters. The difference is that Fortran keeps track of the
actual length of a string in a separate (invisible, internal) integer variable, while C indicates the end of a
string by a zero byte.

One consequence of this is that a C string must be one character longer than a corresponding Fortran
string, to hold the zero byte. The other consequence is that Fortran must pass the length of the string as an
invisible argument. This argument is passed by value, not by reference, and goes at the end of the argument
list. If there are several string arguments, all length arguments go at the end, in the same order as the
strings.

In this particular example the string length is passsed twice, in the hidden internal variable messg length
and also explicitly in nmessg. The subroutine could use either one. The unnecessary nmessg argument
probably dates back to the days when it was a good policy not to assume too much about the intelligence
of a Fortran compiler.

My XERROR routine does not do all the things the original does, and the formatting looks different, but
it does get the error message printed. Implementing more features is left as an exercise for the reader.

#include <stdio.h>

void xerror_(char *messg, int *nmessg, int *nerr, int xlevel, int messg_length) {
char message[73];
int 1i;

/* copy the message over into a C string */
for (i = 0; i < *nmessg; i++) message[i] = messgl[i];
message [*nmessg] = ’\0’;

switch (xlevel) {
case 2: fprintf(stderr,"Fatal Error ");

break;

case 1: fprintf(stderr,"Recoverable Error ");
break;

default: fprintf(stderr,"Warning ");

}

fprintf (stderr, "%d\n%s\n", *nerr ,message) ;
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17 Calling Fortran From C

exit(1);
}
Note how I am carefully copying over the message into a separate C string. The quick and dirty way is
messg[*nmessg] = ’\0’. However, if the error message is the full 72 characters long, this would write a

zero byte over the following storage location, with unknown consequences.

It is unlikely that this will happen, and even if it does happen, it is unlikely that this would lead to any
problems. Still, an error of this sort is virtually impossible to track down, and I do believe in defensive
programming. Also, if you are paranoid: little errors like this have been exploited repeatedly by hackers.

Let’s link DGAMMA first with the original XERROR routine from CMLIB, and test it on a DecStation:

% £77 -o dgamma dgamma.c /home/math/lib/‘arch‘/libcm.a
% 1ls -1 dgamma

-rwxrwxr-x 1 keinert 478436 Nov 1 11:55 dgammax

% dgamma

enter x: -1

FATAL ERROR IN...
DGAMMA X IS A NEGATIVE INTEGER

ERROR NUMBER = 4

JOB ABORT DUE TO FATAL ERROR.

0 ERROR MESSAGE SUMMARY

MESSAGE START NERR LEVEL COUNT
DGAMMA X IS A NEGAT 4 2 1

With xerror.c

% £77 -o dgamma dgamma.c xerror.c /home/math/lib/‘arch/libcm.a
% 1ls -1 dgamma

-rwxrwxr-x 1 keinert 81492 Nov 1 11:56 dgammax

% dgamma

enter x: -1

Fatal Error 4

DGAMMA X IS A NEGATIVE INTEGER

The program is now about 400K shorter, and still prints error messages.

To be honest, this trick is not really needed any longer on Alphas and SGIs. The newer machines all
support dynamic linking. On a DEC Alpha, the file length can be shortened from 49152 to 32768, which
isn’t as dramatic a difference; on an SGI, the file size goes from 31196 to 24004. I assume there is still a
difference of 400K or more of main memory during execution, when the dynamic libraries get loaded.

Subroutine XERBLA from LAPACK is much simpler, and reproduced in its entirety (minus comments):

subroutine xerbla(srname,info)
characterx6 srname
integer info

write(x,fmt =9999) srname, info
stop
9999 format(’ ** On entry to ’,a6,’ parameter number ’,i2,’ had an illegal value’)

end
The C translation is
#include <stdio.h>

void xerbla_(char srname[6], int *info, int srname_length) {
char name[7];
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int 1i;

for (i = 0; 1 < 6; i++) name[i] = srnamel[i];

name[6] = ’\0’;
fprintf(stderr," ** On entry to %6s parameter number %d had an illegal value\n",

name, *info) ;
exit(1);

}
Normally, we would take the string length from srname length, but in this particular case the LAPACK

documentation states that all subroutine names have exactly 6 characters.
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CASE STUuDY 4: DQAGS

This case study illustrates the passing of a subroutine name as an argument.
Routine DQAGS calculates an approximation to f; f(x)dz. The declaration is

subroutine dqags(f,a,b,epsabs,epsrel,result,abserr,neval,ier,

+ 1limit,lenw,last,iwork,work)
integer neval, ier, limit, lenw, last, iwork(limit)
double precision f, a, b, epsabs, epsrel, result, abserr, work (lenw)
external f

For the exact meaning of all these parameters, see the DQAGS documentation. DQAGS is part of QUAD-
PACK, which is part of CMLIB. For our purposes it suffices to know that on input we have to specify the
function f, integration limits a, b and the requested absolute and/or relative accuracy epsabs, epsrel.
On return, we get the approximate integral result, the estimated actual error abserr, and the number of
function evaluations done neval.

Whether the function to be integrated is written in Fortran or C makes no difference. You just have to
make sure that a C function does argument passing by reference.

As an example, let’s integrate e® from 0 to 1 twice, once using a Fortran function and once using a C
function.

#include <stdio.h>
#include <math.h>

extern void dqags_(double f(double *x), double *a, double *b, double *epsabs,
double *epsrel, double *result, double *abserr, int *neval,
int *ier, int *1limit, int *lenw, int *last, int iwork[],
double work[]);

/* Fortran function */
extern double f1_(double *x);

/% double precision function f1(x)
double precision x
f1 = exp(x)
end

*/

/* C function */
double f2(double *x) {
return exp(*x);

}

#define LIMIT 5
#define LENW 4x*LIMIT

int main(int argc, char **argv) {
int neval, ier, 1limit=LIMIT, lenw=LENW, last, iwork[LIMIT];
double a = 0., b = 1.e0, epsabs = 1.e-10, epsrel = 0., result, abserr, work[LENW];
double exact = exp(l.e0) - 1;

dgags_(f1_, &a, &b, &epsabs, &epsrel, &result, &abserr, &neval,
&ier, &limit, &lenw, &last, iwork, work);
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if (der > 0) {

fprintf (stderr,"DQAGS returned IER = %d\n",ier);
}
printf ("Fortran result
printf ("estimated error = %20.151f\n",abserr);
printf ("actual error %20.151f\n" ,abs(exact - result));
printf ("computed using %d function evaluations\n\n",neval);

%20.151f\n" ,result);

dqags_(f2, &a, &b, &epsabs, &epsrel, &result, &abserr, &neval,
&ier, &limit, &lenw, &last, iwork, work);
if (der > 0) {
fprintf (stderr,"DQAGS returned IER = %d\n",ier);
}
printf ("C result

%20.151f\n" ,result);
printf ("estimated error = %20.151f\n",abserr);
printf ("actual error %20.151f\n" ,abs(exact - result));
printf ("computed using %d function evaluations\n\n",neval);

return(0) ;

We compile and run it with
% £77 [-nofor_main] -o dgags dqags.c f1.f xerror.c /home/math/1lib/‘arch‘/libcm.a
% dqags
Fortran result 1.718281828459046
estimated error 0.000000000000019
actual error = 0.000000000000000
computed using 21 function evaluations

C result 1.718281828459046
estimated error 0.000000000000019
actual error = 0.000000000000000
computed using 21 function evaluations
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CASE StuDY 5: CGAMMA

This case study illustrates the use of complex numbers. This is not quite so simple. You should skip this
example unless you really need to use complex numbers.

Routine CGAMMA is the complex equivalent of DGAMMA, that is, the gamma function I'(x) for complex
arguments. It is declared as

complex function cgamma(x)
complex x

Note that CGAMMA is in single precision; I was not able to find a public domain double precision complex
gamma function.

The main problem is that C does not have complex numbers. As far as storing them goes, that is easy to
fix:

typedef struct { float re, im; } complex;
typedef struct { double re, im; } double_complex;

Now you can have declarations like complex x, even arrays like complex x[10], and they will be stored
like Fortran complex numbers. You still don’t get complex arithmetic. If you want to multiply complex
numbers, you have to write your own multiplication routine, for example

complex cproduct(complex x, complex y) {
complex z;
Z.re = X.re * y.re - x.im * y.im;
z.im = x.re * y.im + x.im * y.re;
return z;

3

Now you can program z = x -y as z
notation gets tedious very fast.

If you really want to work with complex numbers in C, it may be worthwhile learning C++. C++ lets
you define arithmetic operations on new data types using standard notation, and I am sure this has been
done already for complex numbers.

An even bigger problem occurs with functions that return a complex number, like CGAMMA. At first,
the interface appears straightforward, just a minor modification of the DGAMMA example:

cproduct (x,y), and similarly for other arithmetic operations. This

#include <stdio.h>
#include <math.h>

typedef struct { float re, im; } complex;
extern complex cgamma_(complex *x) ;

int main(int argc, char **argv) {
complex x, V;
printf ("enter x: ");
scanf ("4EfhE" ,&(x.re) ,&(x.im));
y = cgamma_ (&x) ;
printf ("gamma(x) = %10.7g + i %10.7g\n",y.re,y.im);
return 0O;

3

This program compiles and runs, but produces garbage.
In Fortran, functions can return only scalars. Real scalars are returned in one particular CPU register,
complex scalars use two registers.
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In C, functions can return scalars, pointers, structures, maybe even arrays. Anything that fits into one
CPU register (a real number, integer, character, or pointer) is returned in the same CPU register that Fortran
uses. Anything longer is returned on the stack.

The one place where these conventions clash is complex numbers: Fortran returns a complex number in
two registers, C uses the stack.

I don’t see how you could access a Fortran complex return value from C without using assembly language.
The best easy solution I came up with is to create a Fortran interface routine CGAMMAZ2 which converts a
function return value into a subroutine argument:

subroutine cgamma2(x,y)
complex x, y, cgamma
y = cgamma(x)
end
Now we can get to the return value y from C:

#include <stdio.h>
#include <math.h>

typedef struct { float re, im; } complex;
extern void cgamma2_(complex *x, complex *y);

int main(int argc, char **argv) {
complex x, V;
printf ("enter x: ");
scanf ("%f%E" ,&(x.re) ,&(x.1im)) ;
cgamma2_ (&x,&y) ;
printf ("gamma(x) = %10.7g + i %10.7g\n",y.re,y.im);
return O;

}

To compile and run
% £77 [-nofor_main] -o cgamma cgamma.c cgamma2.f xerror.c /home/math/lib/‘arch‘/libcm.a
% cgamma
enter x: 2 1
gamma(x) = 0.6529655 + i  0.343066
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CASE STtuDY 6: DGESVD REVISITED

This case study deals with advanced topics. Most users should skip this section.
Two-Dimensional Arrays

Let’s look at the reason why a two-dimensional array argument is declared as double (*A) [] instead of the
more natural double A[][], and why my print matrix subroutine in case study DGESVD is so messy. We
need to consider how array subscripting is implemented.

Two-dimensional arrays in C are stored by rows. That means that if A is declared as

double A[5][10];

then A[i] [j] refers to the location (10*i+j) from the start. In order to do address calculations correctly,
the compiler needs to know the second dimension of A. Similarly, the Fortran compiler needs to know the
first dimension.

When a two-dimensional array is passed to a subroutine, the dimension information must be made available
to the subroutine. Fortran allows dimensions to be passed as a parameters, as in

subroutine sub(A,m,n)

integer m, n

real A(m,n)
As far as I know, neither C nor C++ let you do this. The only solution is to do your own address arithmetic.
In print matrix, I am doing that in a macro, to keep the code halfway readable.

As far as declaring the argument type goes, C rejects double A[][] since it contains no dimension
information. It would accept double A[][10] (only the second dimension is essential), but then you could
only pass arrays with a second dimension of 10. Some experimentation determined that the compiler will
accept the notation double (*A) [1, which means that A is a pointer to an array of doubles.

A Fancier Interface

Let’s assume you want to do a whole bunch of work with routines from some Fortran library. It would be
nice to hide all the messy details in some interface routines once and for all. Here is how I would go about
it. Note the similarity with the Matlab interface in my other document Calling Fortran from Matlab.

After looking at a couple of matrix packages for C and C++, I decided that I like Matlab’s approach best.
My matrix data structure is a stripped-down version of what Matlab uses internally. All sizing information
is contained in the matrix itself, and matrices (in particular working storage) can be created and destroyed
as needed. These matrices are stored by columns, so we can interface them more easily to Fortran.

My interface routine dgesvd takes 4 parameters: input matrix A, output matrices U, S, VT. It takes care
of setting up the other 10 parameters dgesvd_ requires. In detail, it does the following:

e extract dimension information from the arguments
e create working storage
e call dgesvd.
e destroy working storage
I will let the code speak for itself:
#include <stdio.h>
#include <math.h>
#include <stdlib.h>

#define max(a,b) ((a) > (b) ? (a) : (b))
#define min(a,b) ((a) < (b) ? (a) : (b))

typedef struct { int m, n; double *data; } matrix;

matrix *create_matrix(int m, int n) {
matrix *M;
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M = (matrix *) malloc(sizeof (matrix));
if (M == NULL) {
fprintf (stderr,"Memory allocation error\n");

exit(1);
}
M->m = m;
M->n = n;

M->data = (double *) malloc(m * n * sizeof (double));
if (M->data == NULL) {
fprintf (stderr,"Memory allocation error\n");
exit(1);
}

return M;

}

void destroy_matrix(matrix *M) {
free(M->data);
free(M);

}

void print_matrix(char *label, matrix *A) {
int i, j;
#define A(i,j) (¥(A->data + (A->m)*j + 1))

printf ("%s\n",label);

for (i = 0; 1 < A->m; i++) {
for (j = 0; j < A->n; j++)

printf ("%20.151f ",A(i,j));

printf ("\n");

}

printf ("\n");

}

extern void dgesvd_(char *jobu, char *jobvt, int *m, int *n,
double A[], int *1da, double S[], double U[],
int *1du, double VT[], int *1dvt, double work[],
int *1lwork, int *info);

int dgesvd(matrix *A, matrix *U, matrix *S, matrix *VT) {
char job = ’a’;
int m = A->m, n = A->n, lwork = 5*max(m,n), info;
matrix *work;

work = create_matrix(lwork,1);

dgesvd_(&job,&job,&m,&n,A->data,&(A->m) ,S->data,U->data,&(U->n),
VT->data,&(VT->n) ,work->data, &lwork,&info) ;
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destroy_matrix(work) ;

return(info) ;

}

#define M 2
#define N 3

int main(int argc, char **argv) {
double data[] = {1,4,2,5,3,6};

matrix *A = create_matrix(M,N),

*U = create_matrix(M,M),

*VT = create_matrix(N,N),

*S = create_matrix(min(M,N),1);
int info;

A->data = data;
print_matrix("A =",A);

info = dgesvd(A, U,S,VT);

if (info != 0) fprintf(stderr,"DGESVD returned info = %d\n",info);

print_matrix("A =",A);
print_matrix("U =",U);
print_matrix("Sigma =",S);
print_matrix("VT =",VT);

return(0) ;
}

The program compiles and runs like before.
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5. CALLING FORTRAN FROM C-+-+

This section describes how to call a Fortran subroutine from C++. It is very rudimentary because I know
very little about C++. One of these days I hope to expand the section and/or integrate it better with the
section on C, but don’t hold your breath. It is assumed that you fully understand the section Calling Fortran
from C.

If you want to reproduce the case study in this section, you will need access to CMLIB and the Gnu C++
compiler. On Project Vincent, the following statements should be in your .startup.tty file:

add math
add gcc

Documentation for CMLIB can be found through http://www.math.iastate.edu/software.html. The
official documentation for the Gnu C++ compiler is a hypertext document available from inside the Emacs
editor. You can access it by pressing Ctrl-U Ctrl-H i in Emacs, and giving /home/gcc2/info/gcc. info
as the document name. There is a man page for C++, but it states that it may be out of date and will not
be updated any more. Take your chances if you want.

All the guidelines from the section Calling Fortran from C apply also to C++, and there is one new one:

Wrap extern "C" {...} around the extern statements referring to Fortran or plain C

One of the main features of C++ is overloading. This means that several subroutines can share the same
name, as long as they have different types of arguments. The compiler will figure out from the arguments
which of the routines you mean. This is not unlike the situation in Fortran, where y = exp(x) invokes the
single precision, double precision, or complex exponential function, depending on the type of x.

In order to maintain its sanity, the C4++ compiler internally appends a string indicating the argument
types to each subroutine name. For the Fortran interface, you need to turn this feature off. You do this
by declaring your Fortran or plain C subroutines inside an extern "C" {...} environment. See case study
DGAMMA for an example.
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| CASE Stupy 1: DGAMMA

This case study illustrates mainly the linking step. For details on the interface, see section Calling Fortran
from C. As an example, we use the simplest case: calling a simple function with one scalar argument and
one return value.

We want to interface the double precision gamma function DGAMMA from FNLIB, which is part of
CMLIB, declared as

double precision function dgamma(x)
double precision x

This function calculates the gamma function I'(z).
The C++ program dgamma.C is

#include <stream.h>
#include <math.h>

extern "C" {
extern double dgamma_(double *x);

3

int main(int argc, char **argv) {
double x, y;
cout << "enter x: ";
cin >> x;
y = dgamma_ (&x);
cout << "gamma(x) = " << y << "\n";
return O;

3

This is basically the same as dgamma.c in section Calling Fortran from C, except for the wrapper around
the extern declaration and the different I/O statements.

Linking is a real headache. As mentioned before, the linking must be done by the Fortran compiler;
unfortunately, the Fortran compiler knows where the system C libraries are, but not where the C++ libraries
are. That is because the system C compiler and the system Fortran compiler come from the same company,
the C++ compiler does not. The situation is complicated by the fact that the C++ libraries are located in
directories with very long, complicated names.

The following instructions are accuracte as of October 22, 1996. As soon as a new version of the Gnu
C++ compiler gets installed, or the libraries get moved for some other reason, this part will break.

If you need to do this from scratch, you can figure out the system libraries as follows: write a trivial C4++
program hello.C

#include <stream.h>

int main(int argc, char **argv) {
cout << "hello, world\n";
return 0;
}
and compile and link it verbosely. Only the -L and -1 arguments in the 1d statement at the end are
important. On my DecStation at the time of writing, I got the following (after splitting the line across
several lines, for readability):

% gt++ -v hello.C

/afs/iastate.edu/project/gcc2/ultrix43a/lib/gcc-1ib/mips-dec-ultrix4.3/2.7.2/1d
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/usr/lib/cmplrs/cc/crt0.o
-L/afs/iastate.edu/project/gcc2/ultrix43a/lib/gcc-1ib/mips-dec-ultrix4.3/2.7.2
-L/usr/1lib/cmplrs/cc
-L/usr/1lib/cmplrs/cc
-L/afs/iastate.edu/project/gcc2/ultrix43a/1ib
/usr/tmp/cca240561.0 -1g++ -1lstdc++ -1lm -lgcc -1lc -lgcc
%
Anything in /usr/1ib would be known to the Fortran compiler, and /afs/iastate.edu/project/gcc2 is
the same as /home/gcc2, so we need to link with
-L/home/gcc2/ultrix43a/1lib/gcc-1ib/mips-dec-ultrix4.3/2.7.2
-L/home/gcc2/ultrix43a/1ib -1g++ -1lstdc++ -1m -1lgcc -1lc -lgcc
Now we are ready:
% g++ -c dgamma.C
% £77 -o dgamma dgamma.o /home/math/lib/dec/libcm.a
-L/home/gcc2/ultrix43a/lib/gcc-1lib/mips-dec-ultrix4.3/2.7.2
-L/home/gcc2/ultrix43a/1ib -1g++ -1lstdc++ -1m -1lgcc -lc -lgcc
% dgamma
enter x: 2.718
gamma(x) = 1.56711
h
Everything after the £77 is on one huge line; I have split it here only for readability.
On an Alpha, the linking command is
% £77 -nofor_main -o dgamma dgamma.o /home/math/lib/axp/libcm.a
-L/home/gcc2/du3.2/1ib/gcc-1ib/alpha-dec-0s£3.2/2.7.2
-L/home/gcc2/du3.2/1ib -1g++ -1lstdc++ -1lm -lgcc -1lc -lgcc
On an SGI, the command is
% £77 -o dgamma dgamma.o /home/math/lib/sgi/libcm.a
-L/home/gcc2/sgib3/1lib/gcc-1ib/mips-sgi-irix5.3/2.7.2
-L/home/gcc2/sgib3/1ib -1g++ -1lstdc++ -1lm -lgcc -1lc -lgcc
To keep from going insane, you probably want to put those library names in some environment variable,
alias, or shell script. For example, you could put the following in your .cshrc.mine file:
if (‘arch‘ == "dec") then
setenv GCCLIBS "-L/home/gcc2/ultrix43a/lib/gcc-1lib/mips-dec-ultrix4.3/2.7.2
-L/home/gcc2/ultrix43a/1ib -1g++ -lstdc++ -1m -lgcc -lc -lgcc"
else if (‘arch‘ == "axp") then
setenv GCCLIBS "-L/home/gcc2/du3.2/1ib/gcc-1ib/alpha-dec-0s£3.2/2.7.2
-L/home/gcc2/du3.2/1ib -1g++ -1lstdc++ -1m -lgcc -lc -lgec"
else
setenv GCCLIBS "-L/home/gcc2/sgib3/1lib/gcc-1ib/mips-sgi-irix5.3/2.7.2
-L/home/gcc2/sgib3/1ib -1g++ -lstdc++ -1lm -lgcc -lc -lgecc"
endif
(again, all the setenv statements should be one line, not two). Then you can compile with

% g++ -c dgamma.C
% £77 [-nofor_main] -o dgamma dgamma.o /home/math/lib/dec/libcm.a $GCCLIBS

On Alphas running Digital UNIX 3.2D, a C++ compiler from DEC is now available. Unfortunately, it
is not as nicely integrated with Fortran as the standard C compiler. You still have to specify a bunch of
libraries to link with. The linking sequence for our example is

% cxx -c dgamma.C
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% £77 -nofor_main -o dgamma dgamma.o /home/math/lib/dec/libcm.a
/usr/lib/cmplrs/cxx/_main.o -L/usr/lib/cmplrs/cxx -lcxxstd -lcxx -lexc

% dgamma

enter x: 2.718

gamma(x) = 1.56711
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