clm5/doc/source/tech_note/Photosynthesis/CLM50_Tech_Note_Photosynthesis.rst
2024-05-09 15:14:01 +08:00

364 lines
26 KiB
ReStructuredText
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

.. _rst_Stomatal Resistance and Photosynthesis:
Stomatal Resistance and Photosynthesis
=========================================
Summary of CLM5.0 updates relative to the CLM4.5
-----------------------------------------------------
We describe here the complete photosynthesis and stomatal conductance parameterizations that appear in CLM5.0. Corresponding information for CLM4.5 appeared in the CLM4.5 Technical Note (:ref:`Oleson et al. 2013 <Olesonetal2013>`).
CLM5 includes the following new changes to photosynthesis and stomatal conductance:
- Default stomatal conductance calculation uses the Medlyn conductance model
- :math:`V_{c,max}` and :math:`J_{max}` at 25 :sup:`\o`\ C: are now prognostic, and predicted via optimality by the LUNA model (Chapter :numref:`rst_Photosynthetic Capacity`)
- Leaf N concentration and the fraction of leaf N in Rubisco used to calculate :math:`V_{cmax25}` are determined by the LUNA model (Chapter :numref:`rst_Photosynthetic Capacity`)
- Water stress is applied by the hydraulic conductance model (Chapter :numref:`rst_Plant Hydraulics`)
Introduction
-----------------------
Leaf stomatal resistance, which is needed for the water vapor flux (Chapter :numref:`rst_Momentum, Sensible Heat, and Latent Heat Fluxes`), is coupled to leaf photosynthesis similar to Collatz et al. (:ref:`1991 <Collatzetal1991>`, :ref:`1992 <Collatzetal1992>`). These equations are solved separately for sunlit and shaded leaves using average absorbed photosynthetically active radiation for sunlit and shaded leaves [:math:`\phi ^{sun}`,\ :math:`\phi ^{sha}` W m\ :sup:`-2` (section :numref:`Solar Fluxes`)] to give sunlit and shaded stomatal resistance (:math:`r_{s}^{sun}`,\ :math:`r_{s}^{sha}` s m\ :sup:`-1`) and photosynthesis (:math:`A^{sun}`,\ :math:`A^{sha}` µmol CO\ :sub:`2` m\ :sup:`-2` s\ :sup:`-1`). Canopy photosynthesis is :math:`A^{sun} L^{sun} +A^{sha} L^{sha}`, where :math:`L^{sun}` and :math:`L^{sha}` are the sunlit and shaded leaf area indices (section :numref:`Solar Fluxes`). Canopy conductance is :math:`\frac{1}{r_{b} +r_{s}^{sun} } L^{sun} +\frac{1}{r_{b} +r_{s}^{sha} } L^{sha}`, where :math:`r_{b}` is the leaf boundary layer resistance (section :numref:`Sensible and Latent Heat Fluxes and Temperature for Vegetated Surfaces`).
.. _Stomatal resistance:
Stomatal resistance
-----------------------
CLM5 calculates stomatal conductance using the Medlyn stomatal conductance model (:ref:`Medlyn et al. 2011<Medlynetal2011>`). Previous versions of CLM calculated leaf stomatal resistance using the Ball-Berry conductance model as described by :ref:`Collatz et al. (1991)<Collatzetal1991>` and implemented in global climate models (:ref:`Sellers et al. 1996<Sellersetal1996>`). The Medlyn model calculates stomatal conductance (i.e., the inverse of resistance) based on net leaf photosynthesis, the leaf-to-air vapor pressure difference, and the CO\ :sub:`2` concentration at the leaf surface. Leaf stomatal resistance is:
.. math::
:label: 9.1
\frac{1}{r_{s} } =g_{s} = g_{o} + 1.6(1 + \frac{g_{1} }{\sqrt{D_{s}}}) \frac{A_{n} }{{c_{s} \mathord{\left/ {\vphantom {c_{s} P_{atm} }} \right.} P_{atm} } }
where :math:`r_{s}` is leaf stomatal resistance (s m\ :sup:`2` :math:`\mu`\ mol\ :sup:`-1`), :math:`g_{o}` is the minimum stomatal conductance (:math:`\mu` mol m :sup:`-2` s\ :sup:`-1`), :math:`A_{n}` is leaf net photosynthesis (:math:`\mu`\ mol CO\ :sub:`2` m\ :sup:`-2` s\ :sup:`-1`), :math:`c_{s}` is the CO\ :sub:`2` partial pressure at the leaf surface (Pa), :math:`P_{atm}` is the atmospheric pressure (Pa), and :math:`D_{s}=(e_{i}-e{_s})/1000` is the leaf-to-air vapor pressure difference at the leaf surface (kPa) where :math:`e_{i}` is the saturation vapor pressure (Pa) evaluated at the leaf temperature :math:`T_{v}`, and :math:`e_{s}` is the vapor pressure at the leaf surface (Pa). :math:`g_{1}` is a plant functional type dependent parameter (:numref:`Table Plant functional type (PFT) stomatal conductance parameters`) and are the same as those used in the CABLE model (:ref:`de Kauwe et al. 2015 <deKauwe2015>`).
The value for :math:`g_{o}=100` :math:`\mu` mol m :sup:`-2` s\ :sup:`-1` for C\ :sub:`3` and C\ :sub:`4` plants. Photosynthesis is calculated for sunlit (:math:`A^{sun}`) and shaded (:math:`A^{sha}`) leaves to give :math:`r_{s}^{sun}` and :math:`r_{s}^{sha}`. Additionally, soil water influences stomatal resistance through plant hydraulic stress, detailed in the :ref:`rst_Plant Hydraulics` chapter.
Resistance is converted from units of s m\ :sup:`2` :math:`\mu` mol\ :sup:`-1` to s m\ :sup:`-1` as: 1 s m\ :sup:`-1` = :math:`1\times 10^{-9} R_{gas} \frac{\theta _{atm} }{P_{atm} }` :math:`\mu` mol\ :sup:`-1` m\ :sup:`2` s, where :math:`R_{gas}` is the universal gas constant (J K\ :sup:`-1` kmol\ :sup:`-1`) (:numref:`Table Physical constants`) and :math:`\theta _{atm}` is the atmospheric potential temperature (K).
.. _Table Plant functional type (PFT) stomatal conductance parameters:
.. table:: Plant functional type (PFT) stomatal conductance parameters.
+----------------------------------+-------------------+
| PFT | g\ :sub:`1` |
+==================================+===================+
| NET Temperate | 2.35 |
+----------------------------------+-------------------+
| NET Boreal | 2.35 |
+----------------------------------+-------------------+
| NDT Boreal | 2.35 |
+----------------------------------+-------------------+
| BET Tropical | 4.12 |
+----------------------------------+-------------------+
| BET temperate | 4.12 |
+----------------------------------+-------------------+
| BDT tropical | 4.45 |
+----------------------------------+-------------------+
| BDT temperate | 4.45 |
+----------------------------------+-------------------+
| BDT boreal | 4.45 |
+----------------------------------+-------------------+
| BES temperate | 4.70 |
+----------------------------------+-------------------+
| BDS temperate | 4.70 |
+----------------------------------+-------------------+
| BDS boreal | 4.70 |
+----------------------------------+-------------------+
| C\ :sub:`3` arctic grass | 2.22 |
+----------------------------------+-------------------+
| C\ :sub:`3` grass | 5.25 |
+----------------------------------+-------------------+
| C\ :sub:`4` grass | 1.62 |
+----------------------------------+-------------------+
| Temperate Corn | 1.79 |
+----------------------------------+-------------------+
| Spring Wheat | 5.79 |
+----------------------------------+-------------------+
| Temperate Soybean | 5.79 |
+----------------------------------+-------------------+
| Cotton | 5.79 |
+----------------------------------+-------------------+
| Rice | 5.79 |
+----------------------------------+-------------------+
| Sugarcane | 1.79 |
+----------------------------------+-------------------+
| Tropical Corn | 1.79 |
+----------------------------------+-------------------+
| Tropical Soybean | 5.79 |
+----------------------------------+-------------------+
| Miscanthus | 1.79 |
+----------------------------------+-------------------+
| Switchgrass | 1.79 |
+----------------------------------+-------------------+
.. _Photosynthesis:
Photosynthesis
------------------
Photosynthesis in C\ :sub:`3` plants is based on the model of :ref:`Farquhar et al. (1980)<Farquharetal1980>`. Photosynthesis in C\ :sub:`4` plants is based on the model of :ref:`Collatz et al. (1992)<Collatzetal1992>`. :ref:`Bonan et al. (2011)<Bonanetal2011>` describe the implementation, modified here. In its simplest form, leaf net photosynthesis after accounting for respiration (:math:`R_{d}` ) is
.. math::
:label: 9.2
A_{n} =\min \left(A_{c} ,A_{j} ,A_{p} \right)-R_{d} .
The RuBP carboxylase (Rubisco) limited rate of carboxylation :math:`A_{c}` (:math:`\mu` \ mol CO\ :sub:`2` m\ :sup:`-2` s\ :sup:`-1`) is
.. math::
:label: 9.3
A_{c} =\left\{\begin{array}{l} {\frac{V_{c\max } \left(c_{i} -\Gamma _{*} \right)}{c_{i} +K_{c} \left(1+{o_{i} \mathord{\left/ {\vphantom {o_{i} K_{o} }} \right.} K_{o} } \right)} \qquad {\rm for\; C}_{{\rm 3}} {\rm \; plants}} \\ {V_{c\max } \qquad \qquad \qquad {\rm for\; C}_{{\rm 4}} {\rm \; plants}} \end{array}\right\}\qquad \qquad c_{i} -\Gamma _{*} \ge 0.
The maximum rate of carboxylation allowed by the capacity to regenerate RuBP (i.e., the light-limited rate) :math:`A_{j}` (:math:`\mu` \ mol CO\ :sub:`2` m\ :sup:`-2` s\ :sup:`-1`) is
.. math::
:label: 9.4
A_{j} =\left\{\begin{array}{l} {\frac{J_{x}\left(c_{i} -\Gamma _{*} \right)}{4c_{i} +8\Gamma _{*} } \qquad \qquad {\rm for\; C}_{{\rm 3}} {\rm \; plants}} \\ {\alpha (4.6\phi )\qquad \qquad {\rm for\; C}_{{\rm 4}} {\rm \; plants}} \end{array}\right\}\qquad \qquad c_{i} -\Gamma _{*} \ge 0.
The product-limited rate of carboxylation for C\ :sub:`3` plants and the PEP carboxylase-limited rate of carboxylation for C\ :sub:`4` plants :math:`A_{p}` (:math:`\mu` \ mol CO\ :sub:`2` m\ :sup:`-2` s\ :sup:`-1`) is
.. math::
:label: 9.5
A_{p} =\left\{\begin{array}{l} {3T_{p\qquad } \qquad \qquad {\rm for\; C}_{{\rm 3}} {\rm \; plants}} \\ {k_{p} \frac{c_{i} }{P_{atm} } \qquad \qquad \qquad {\rm for\; C}_{{\rm 4}} {\rm \; plants}} \end{array}\right\}.
In these equations, :math:`c_{i}` is the internal leaf CO\ :sub:`2` partial pressure (Pa) and :math:`o_{i} =0.20P_{atm}` is the O\ :sub:`2` partial pressure (Pa). :math:`K_{c}` and :math:`K_{o}` are the Michaelis-Menten constants (Pa) for CO\ :sub:`2` and O\ :sub:`2`. :math:`\Gamma _{*}` (Pa) is the CO\ :sub:`2` compensation point. :math:`V_{c\max }` is the maximum rate of carboxylation (µmol m\ :sup:`-2` s\ :sup:`-1`, Chapter :numref:`rst_Photosynthetic Capacity`) and :math:`J_{x}` is the electron transport rate (µmol m\ :sup:`-2` s\ :sup:`-1`). :math:`T_{p}` is the triose phosphate utilization rate (µmol m\ :sup:`-2` s\ :sup:`-1`), taken as :math:`T_{p} =0.167V_{c\max }` so that :math:`A_{p} =0.5V_{c\max }` for C\ :sub:`3` plants (as in :ref:`Collatz et al. 1992 <Collatzetal1992>`). For C\ :sub:`4` plants, the light-limited rate :math:`A_{j}` varies with :math:`\phi` in relation to the quantum efficiency (:math:`\alpha =0.05` mol CO\ :sub:`2` mol\ :sup:`-1` photon). :math:`\phi` is the absorbed photosynthetically active radiation (W m\ :sup:`-2`) (section :numref:`Solar Fluxes`), which is converted to photosynthetic photon flux assuming 4.6 :math:`\mu` \ mol photons per joule. :math:`k_{p}` is the initial slope of C\ :sub:`4` CO\ :sub:`2` response curve.
For C\ :sub:`3` plants, the electron transport rate depends on the photosynthetically active radiation absorbed by the leaf. A common expression is the smaller of the two roots of the equation
.. math::
:label: 9.6
\Theta _{PSII} J_{x}^{2} -\left(I_{PSII} +J_{\max } \right)J_{x}+I_{PSII} J_{\max } =0
where :math:`J_{\max }` is the maximum potential rate of electron transport (:math:`\mu`\ mol m\ :sup:`-2` s\ :sup:`-1`, Chapter :numref:`rst_Photosynthetic Capacity`), :math:`I_{PSII}` is the light utilized in electron transport by photosystem II (µmol m\ :sup:`-2` s\ :sup:`-1`), and :math:`\Theta _{PSII}` is a curvature parameter. For a given amount of photosynthetically active radiation absorbed by a leaf (:math:`\phi`, W m\ :sup:`-2`), converted to photosynthetic photon flux density with 4.6 :math:`\mu`\ mol J\ :sup:`-1`, the light utilized in electron transport is
.. math::
:label: 9.7
I_{PSII} =0.5\Phi _{PSII} (4.6\phi )
where :math:`\Phi _{PSII}` is the quantum yield of photosystem II, and the term 0.5 arises because one photon is absorbed by each of the two photosystems to move one electron. Parameter values are :math:`\Theta _{PSII}` \ = 0.7 and :math:`\Phi _{PSII}` \ = 0.85. In calculating :math:`A_{j}` (for both C\ :sub:`3` and C\ :sub:`4` plants), :math:`\phi =\phi ^{sun}` for sunlit leaves and :math:`\phi =\phi ^{sha}` for shaded leaves.
The model uses co-limitation as described by :ref:`Collatz et al. (1991, 1992) <Collatzetal1991>`. The actual gross photosynthesis rate, :math:`A`, is given by the smaller root of the equations
.. math::
:label: 9.8
\begin{array}{rcl} {\Theta _{cj} A_{i}^{2} -\left(A_{c} +A_{j} \right)A_{i} +A_{c} A_{j} } & {=} & {0} \\ {\Theta _{ip} A^{2} -\left(A_{i} +A_{p} \right)A+A_{i} A_{p} } & {=} & {0} \end{array} .
Values are :math:`\Theta _{cj} =0.98` and :math:`\Theta _{ip} =0.95` for C\ :sub:`3` plants; and :math:`\Theta _{cj} =0.80`\ and :math:`\Theta _{ip} =0.95` for C\ :sub:`4` plants. :math:`A_{i}` is the intermediate co-limited photosynthesis. :math:`A_{n} =A-R_{d}`.
The parameters :math:`K_{c}`, :math:`K_{o}`, and :math:`\Gamma` depend on temperature. Values at 25 °C are :math:`K_{c25} ={\rm 4}0{\rm 4}.{\rm 9}\times 10^{-6} P_{atm}`, :math:`K_{o25} =278.4\times 10^{-3} P_{atm}`, and :math:`\Gamma _{25} {\rm =42}.75\times 10^{-6} P_{atm}`. :math:`V_{c\max }`, :math:`J_{\max }`, :math:`T_{p}`, :math:`k_{p}`, and :math:`R_{d}` also vary with temperature.
:math:`J_{\max 25}` at 25 :sup:`\o`\ C: is calculated by the LUNA model (Chapter :numref:`rst_Photosynthetic Capacity`)
Parameter values at 25 :sup:`\o`\ C are calculated from :math:`V_{c\max }` \ at 25
:sup:`\o`\ C:, including:
:math:`T_{p25} =0.167V_{c\max 25}`, and
:math:`R_{d25} =0.015V_{c\max 25}` (C\ :sub:`3`) and
:math:`R_{d25} =0.025V_{c\max 25}` (C\ :sub:`4`).
For C\ :sub:`4` plants, :math:`k_{p25} =20000\; V_{c\max 25}`.
However, when the biogeochemistry is active (the default mode), :math:`R_{d25}` is calculated from leaf nitrogen as described in (Chapter :numref:`rst_Plant Respiration`)
The parameters :math:`V_{c\max 25}`, :math:`J_{\max 25}`, :math:`T_{p25}`, :math:`k_{p25}`, and :math:`R_{d25}` are scaled over the canopy for sunlit and shaded leaves (section :numref:`Canopy scaling`). In C\ :sub:`3` plants, these are adjusted for leaf temperature, :math:`T_{v}` (K), as:
.. math::
:label: 9.9
\begin{array}{rcl} {V_{c\max } } & {=} & {V_{c\max 25} \; f\left(T_{v} \right)f_{H} \left(T_{v} \right)} \\ {J_{\max } } & {=} & {J_{\max 25} \; f\left(T_{v} \right)f_{H} \left(T_{v} \right)} \\ {T_{p} } & {=} & {T_{p25} \; f\left(T_{v} \right)f_{H} \left(T_{v} \right)} \\ {R_{d} } & {=} & {R_{d25} \; f\left(T_{v} \right)f_{H} \left(T_{v} \right)} \\ {K_{c} } & {=} & {K_{c25} \; f\left(T_{v} \right)} \\ {K_{o} } & {=} & {K_{o25} \; f\left(T_{v} \right)} \\ {\Gamma } & {=} & {\Gamma _{25} \; f\left(T_{v} \right)} \end{array}
.. math::
:label: 9.10
f\left(T_{v} \right)=\; \exp \left[\frac{\Delta H_{a} }{298.15\times 0.001R_{gas} } \left(1-\frac{298.15}{T_{v} } \right)\right]
and
.. math::
:label: 9.11
f_{H} \left(T_{v} \right)=\frac{1+\exp \left(\frac{298.15\Delta S-\Delta H_{d} }{298.15\times 0.001R_{gas} } \right)}{1+\exp \left(\frac{\Delta ST_{v} -\Delta H_{d} }{0.001R_{gas} T_{v} } \right)} .
:numref:`Table Temperature dependence parameters for C3 photosynthesis` lists parameter values for :math:`\Delta H_{a}` and :math:`\Delta H_{d}`. :math:`\Delta S` is calculated separately for :math:`V_{c\max }` and :math:`J_{max }` to allow for temperature acclimation of photosynthesis (see equation :eq:`9.16`), and :math:`\Delta S` is 490 J mol :sup:`-1` K :sup:`-1` for :math:`R_d` (:ref:`Bonan et al. 2011<Bonanetal2011>`, :ref:`Lombardozzi et al. 2015<Lombardozzietal2015>`). Because :math:`T_{p}` as implemented here varies with :math:`V_{c\max }`, :math:`T_{p}` uses the same temperature parameters as :math:`V_{c\max}`. For C\ :sub:`4` plants,
.. math::
:label: 9.12
\begin{array}{l} {V_{c\max } =V_{c\max 25} \left[\frac{Q_{10} ^{(T_{v} -298.15)/10} }{f_{H} \left(T_{v} \right)f_{L} \left(T_{v} \right)} \right]} \\ {f_{H} \left(T_{v} \right)=1+\exp \left[s_{1} \left(T_{v} -s_{2} \right)\right]} \\ {f_{L} \left(T_{v} \right)=1+\exp \left[s_{3} \left(s_{4} -T_{v} \right)\right]} \end{array}
with :math:`Q_{10} =2`,
:math:`s_{1} =0.3`\ K\ :sup:`-1`
:math:`s_{2} =313.15` K,
:math:`s_{3} =0.2`\ K\ :sup:`-1`, and
:math:`s_{4} =288.15` K. Additionally,
.. math::
:label: 9.13
R_{d} =R_{d25} \left\{\frac{Q_{10} ^{(T_{v} -298.15)/10} }{1+\exp \left[s_{5} \left(T_{v} -s_{6} \right)\right]} \right\}
with :math:`Q_{10} =2`, :math:`s_{5} =1.3` K\ :sup:`-1` and :math:`s_{6} =328.15`\ K, and
.. math::
:label: 9.14
k_{p} =k_{p25} \, Q_{10} ^{(T_{v} -298.15)/10}
with :math:`Q_{10} =2`.
.. _Table Temperature dependence parameters for C3 photosynthesis:
.. table:: Temperature dependence parameters for C3 photosynthesis.
+------------------------+-----------------------------------------------------------------+-----------------------------------------------------------------+
| Parameter | :math:`\Delta H_{a}` (J mol\ :sup:`-1`) | :math:`\Delta H_{d}` (J mol\ :sup:`-1`) |
+========================+=================================================================+=================================================================+
| :math:`V_{c\max }` | 72000 | 200000 |
+------------------------+-----------------------------------------------------------------+-----------------------------------------------------------------+
| :math:`J_{\max }` | 50000 | 200000 |
+------------------------+-----------------------------------------------------------------+-----------------------------------------------------------------+
| :math:`T_{p}` | 72000 | 200000 |
+------------------------+-----------------------------------------------------------------+-----------------------------------------------------------------+
| :math:`R_{d}` | 46390 | 150650 |
+------------------------+-----------------------------------------------------------------+-----------------------------------------------------------------+
| :math:`K_{c}` | 79430 | |
+------------------------+-----------------------------------------------------------------+-----------------------------------------------------------------+
| :math:`K_{o}` | 36380 | |
+------------------------+-----------------------------------------------------------------+-----------------------------------------------------------------+
| :math:`\Gamma _{*}` | 37830 | |
+------------------------+-----------------------------------------------------------------+-----------------------------------------------------------------+
In the model, acclimation is implemented as in :ref:`Kattge and Knorr (2007) <KattgeKnorr2007>`. In this parameterization, :math:`V_{c\max }` and :math:`J_{\max }` vary with the plant growth temperature. This is achieved by allowing :math:`\Delta S`\ to vary with growth temperature according to
.. math::
:label: 9.15
\begin{array}{l} {\Delta S=668.39-1.07(T_{10} -T_{f} )\qquad \qquad {\rm for\; }V_{c\max } } \\ {\Delta S=659.70-0.75(T_{10} -T_{f} )\qquad \qquad {\rm for\; }J_{\max } } \end{array}
The effect is to cause the temperature optimum of :math:`V_{c\max }` and :math:`J_{\max }` to increase with warmer temperatures. Additionally, the ratio :math:`J_{\max 25} /V_{c\max 25}` at 25 °C decreases with growth temperature as
.. math::
:label: 9.16
J_{\max 25} /V_{c\max 25} =2.59-0.035(T_{10} -T_{f} ).
In these acclimation functions, :math:`T_{10}` is the 10-day mean air temperature (K) and :math:`T_{f}` is the freezing point of water (K). For lack of data, :math:`T_{p}` acclimates similar to :math:`V_{c\max }`. Acclimation is restricted over the temperature range :math:`T_{10} -T_{f} \ge` 11°C and :math:`T_{10} -T_{f} \le` 35°C.
.. _Canopy scaling:
Canopy scaling
--------------------------------------------
When LUNA is on, the :math:`V_{c\max 25}` for sun leaves is scaled to the shaded leaves :math:`J_{\max 25}`, :math:`T_{p25}`, :math:`k_{p25}`, and :math:`R_{d25}` scale similarly.
.. math::
:label: 9.17
\begin{array}{rcl}
{V_{c\max 25 sha}} & {=} & {V_{c\max 25 sha} \frac{i_{v,sha}}{i_{v,sun}}} \\
{J_{\max 25 sha}} & {=} & {J_{\max 25 sun} \frac{i_{v,sha}}{i_{v,sun}}} \\
{T_{p sha}} & {=} & {T_{p sun} \frac{i_{v,sha}}{i_{v,sun}}} \end{array}
Where :math:`i_{v,sun}` and :math:`i_{v,sha}` are the leaf-to-canopy scaling coefficients of the twostream radiation model, calculated as
.. math::
:label: 9.18
i_{v,sun} = \frac{(1 - e^{-(k_{n,ext}+k_{b,ext})*lai_e)} / (k_{n,ext}+k_{b,ext})}{f_{sun}*lai_e}\\
i_{v,sha} = \frac{(1 - e^{-(k_{n,ext}+k_{b,ext})*lai_e)} / (k_{n,ext}+k_{b,ext})}{(1 - f_{sun})*lai_e}
k_{n,ext} is the extinction coefficient for N through the canopy (0.3). k_{b,ext} is the direct beam extinction coefficient calculated in the surface albedo routine, and :math:`f_{sun}` is the fraction of sunlit leaves, both derived from Chapter :numref:`rst_Surface Albedos`.
When LUNA is off, scaling defaults to the mechanism used in CLM4.5.
.. _Numerical implementation photosynthesis:
Numerical implementation
----------------------------
The CO\ :sub:`2` partial pressure at the leaf surface, :math:`c_{s}` (Pa), and the vapor pressure at the leaf surface, :math:`e_{s}` (Pa), needed for the stomatal resistance model in equation :eq:`9.1`, and the internal leaf CO\ :sub:`2` partial pressure :math:`c_{i}` (Pa), needed for the photosynthesis model in equations :eq:`9.3`-:eq:`9.5`, are calculated assuming there is negligible capacity to store CO\ :sub:`2` and water vapor at the leaf surface so that
.. math::
:label: 9.19
A_{n} =\frac{c_{a} -c_{i} }{\left(1.4r_{b} +1.6r_{s} \right)P_{atm} } =\frac{c_{a} -c_{s} }{1.4r_{b} P_{atm} } =\frac{c_{s} -c_{i} }{1.6r_{s} P_{atm} }
and the transpiration fluxes are related as
.. math::
:label: 9.20
\frac{e_{a} -e_{i} }{r_{b} +r_{s} } =\frac{e_{a} -e_{s} }{r_{b} } =\frac{e_{s} -e_{i} }{r_{s} }
where :math:`r_{b}` is leaf boundary layer resistance (s m\ :sup:`2` :math:`\mu` \ mol\ :sup:`-1`) (section :numref:`Sensible and Latent Heat Fluxes and Temperature for Vegetated Surfaces`), the terms 1.4 and 1.6 are the ratios of diffusivity of CO\ :sub:`2` to H\ :sub:`2`\ O for the leaf boundary layer resistance and stomatal resistance, :math:`c_{a} ={\rm CO}_{{\rm 2}} \left({\rm mol\; mol}^{{\rm -1}} \right)`, :math:`P_{atm}` is the atmospheric pressure (Pa), :math:`e_{i}` is the saturation vapor pressure (Pa) evaluated at the leaf temperature :math:`T_{v}`, and :math:`e_{a}` is the vapor pressure of air (Pa). The vapor pressure of air in the plant canopy :math:`e_{a}` (Pa) is determined from
.. math::
:label: 9.21
e_{a} =\frac{P_{atm} q_{s} }{0.622}
where :math:`q_{s}` is the specific humidity of canopy air (kg kg\ :sup:`-1`, section :numref:`Sensible and Latent Heat Fluxes and Temperature for Vegetated Surfaces`). Equations :eq:`9.19` and :eq:`9.20` are solved for :math:`c_{s}` and :math:`e_{s}`
.. math::
:label: 9.34
c_{s} =c_{a} -1.4r_{b} P_{atm} A_{n}
.. math::
:label: 9.35
e_{s} =\frac{e_{a} r_{s} +e_{i} r_{b} }{r_{b} +r_{s} }
In terms of conductance with :math:`g_{s} =1/r_{s}` and :math:`g_{b} =1/r_{b}`
.. math::
:label: 9.36
e_{s} =\frac{e_{a} g_{b} +e_{i} g_{s} }{g_{b} +g_{s} } .
Substitution of equation :eq:`9.36` into equation :eq:`9.1` gives an expression for the stomatal resistance (:math:`r_{s}`) as a function of photosynthesis (:math:`A_{n}` )
.. math::
:label: 9.37
ag_{s}^{2} + bg_{s} + c = 0
where
.. math::
:label: 9.38
\begin{array}{l} a = 1 \\
b = -[2(g_{o} * 10^{-6} + d) + \frac{(g_{1}d)^{2}}{g_{b}*10^{-6}D_{l}}] \\
c = (g_{o}*10^{-6})^{2} + [2g_{o}*10^{-6} + d (1-\frac{g_{1}^{2}} {D_{l}})]d \end{array}
and
.. math::
:label: 9.39
d = \frac {1.6 A_{n}} {c_{s} / P_{atm} * 10^{6}}
D_{l} = \frac {max(e_{i} - e_{a},50)} {1000}
Stomatal conductance, as solved by equation :eq:`9.36` (mol m :sup:`-2` s :sup:`-1`), is the larger of the two roots that satisfy the quadratic equation. Values for :math:`c_{i}` are given by
.. math::
:label: 9.40
c_{i} =c_{a} -\left(1.4r_{b} +1.6r_{s} \right)P_{atm} A{}_{n}
The equations for :math:`c_{i}`, :math:`c_{s}`, :math:`r_{s}`, and :math:`A_{n}` are solved iteratively until :math:`c_{i}` converges. :ref:`Sun et al. (2012)<Sunetal2012>` pointed out that the CLM4 numerical approach does not always converge. Therefore, the model uses a hybrid algorithm that combines the secant method and Brent's method to solve for :math:`c_{i}`. The equation set is solved separately for sunlit (:math:`A_{n}^{sun}`, :math:`r_{s}^{sun}` ) and shaded (:math:`A_{n}^{sha}`, :math:`r_{s}^{sha}` ) leaves.